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Needs for Energy during the 21st Century

* Increasing energy demand in the world by 2050
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Sustainable Development Vision Scenario (IEA 2003)
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Why should Nuclear Energy play a major role ?

& « No CO2 or GHG produced
- ho risks of Climate Change

* Nuclear Energy enhances the Energy Security

Supply (versus fossile fuels) and reduces geopolitical / economlcal
risks

 Promising assets to produce Hydrogen as a hew
energy vector for the transports sector

« An already competitive energy source
with still expected improvements

- Safe and reliable with more than 10 000 year.reactors
of experience
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GEN 1V : towards sustainable nuclear energy

(=23 > New requirements for sustainable nuclear energy

« Gradual improvements in : - Concepts with breakthroughs
v' Competitiveness v Minimization of wastes
v’ Safety and reliability v Preservation of resources

v Non Proliferation

> Systems expected to reach technical maturity by 2030

> Assets for new markets Id,\ | )\
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6 Innovative concepts with technological breakthroughs
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Gen IV Systems : an integrated cycle with full actinide recycling
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Influence of Neutron Spectrum on Minor Actinides Transmutation
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Influence of Neutron Spectrum on Minor Actinides Transmutation

Ce:] * Neutrons capture and production of higher isotopes (x 50 for Am)

« Capture to Fission ratios not favorable to transmutation with thermal
neutrons spectra

isotopes LWR FR
of o K //Gf/’_ e o
285 38,8 87 | 0.22) 1,08 057 |~ 029
238 0,103 0,86 | 83 0,04 030 | 75
239, 102 58,7 0,58 1,86 0,56 0,3
240py 0,53 210,2 396,6 036 | 057 1,6
241py, 102,2 40,9 0,40 2,49 0,4 0,19
242p, 0,44 ( 28.8) |( 655 024 | 04y ( 18
*"Np 052 | 33~ 63 082 |17 5,3
241 Am 14 ( 10) | Toe—| o022 | 29 7.4
#3pm 044 | T~ 111 021 |7 T8 8,6
244Cm 1,0 16 T Te—| 042~ | 06 1.4
25Cm 116 17 0,15 5,1 0,9 0,18

Nuclear Energy Division Physor 2004, April 26, 2004 9



What possible Physical Limits for Fast Reactors ?

(E:] e Accumulation of Cm and undesirable isotopes in the cycle ?

Np 237 2> Pu 238

Am 241 -5 Cm 242 -> Pu 238

Am 243 > Cm244 > Cm245 -> Bk > Cf
-=-> Pu 240

- how fast do they accumulate ? do they stabilize ? At what level ? Is it
acceptable or is a specific separation required ?

e Maximum Minor Actinide contents in the core ?
- Considering a global actinide recycling strategy in Gen IV Systems
- Considering also the M.A. production by earlier reactors (Gen Il/lll PWR) to
be transmuted in Gen IV reactors
- Influence of coolant, of fuel concept, of power density, etc... ?

e How to deal with the issue of blankets management versus
non-proliferation requirements ?
- Scenario of a large and dynamic worlwide nuclear development requiring
the use of Fast Breeders
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Innovative Technologies for Fast Reactors

e Opening new strategies require fuel breakthroughs

- Good performance with hard neutron spectrum and Pu balancing requirements

- Resistance to high temperatures : confinement of FP, high neutron fluence, high
actinides density in the core and good thermal conductivity

- Good performance for decay heat removal safety function

- Compact spent fuel treatment for quantitative
recovery and recycling of all actinides

e Important R&D challenges
for innovative fuel concepts
- in core fuel behavior
- fuel fabrication

FUTURIX-FTA
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Technology demonstrations for Fast Reactors

e Necessary technology demonstrations related to Actinide
transmutation and in pile behavior

- transmutation rates
- He release
- fast neutrons fluence

- accidental behavior

e PHENIX reactor as a main
technology demonstration
facility

Phénix current
experimental irradiations
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Technology demonstrations for the Cycle
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Base Scenario for Gen Il/111 to Gen 1V transition
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- Management of Pu stockpile to
deploy 4th generation fast neutron
systems (> 2035)

* Recycling of MA from interim storage

* Integral recycling of Actinides in fast
neutron 4th systems

« Non Proliferation
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Actinides inventory in the base scenario considered

(&2 -+ Pu Mono-recycling in PWR and then recycling in GenlV
Systems as of 2035

Inventories (t) Pu Mono-recycling Pu Mono-recycling >
, , Gen IV FR
- 12035 2050 2070 2100 | 2035 2050 2070 2100
Pu (Total) 396 485 600 773 | 520 600 720 790
Np 20 31 48 75 18 16 15 15
Am 51 81 121 179 20 22 24 25
Cm 4.7 5.3 5.6 6.4 4 6 7 7
MA (Total) 76 118 174 260 (4\/2 44 46 E
Am+Cm (Total) 56 86 127 186 | 24 28 31 32
TRU (Total) 472 603 774 1033 562 644 766 837
Pu (outside reactor) 313 407 527 698 355 379 415 310
TRU (outside reactor) | 383 519 696 952 13 14 15 16
% (Am+Cm) for20% Pu| 3.6 4.2 4.8 5.3 - - - ( A‘I?:
%MOXinthefleet | 12 12 10 10 | 25 38 58 100
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Global Actinides management : 1st conclusions

¢S

The physics of transmutation incites to recycle Pu and M.A.
in fast neutron reactors as soon as possible

* No major difficulty expected to manage the full actinides recycling
in Gen IV systems

« Expected capability of Gen IV systems to absorb M.A. produced by
previous generations

 Flexibility of Gen IV systems in case of a postponed recycling of
Pu + M.A.

... but with increasing difficulties with the date of deployment and
with the type of previous fuel managements in PWR
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An alternative route for MA transmutation

(&) * Subcritical Accelerator Driven Systems dedicated to
— transmute M.A.

High
IV(I: cAntfeur;tls Economical as part of a
o large fleet of reactors
R&D for
Sc. & Tech. Open t_echnological
feasability iIssues

Fast spectrum cores, fast reactor
technologies

Nuclear Energy Division Physor 2004, April 26, 2004 17



Conclusion

* Increasing energy needs expected in the next 50 years
- Nuclear Energy should play a key role

« Waste reduction and natural resources preservation,
proliferation resistance are essential conditions for enhancing
sustainable nuclear energy systems development

« Fast neutron 4t Generation systems afford :

-> arealistic option to transmute all actinides they generate and also
those produced by earlier Generations (PWRS)

-> a good flexibility for actinide management regarding uncertainties on
the date of their deployment

« R&D need to study the physical limits of fast reactors.
Necessary Technology Demonstrations for reactors and cycle
to support the scenarios developped for M.A. management
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